Showing posts with label Vegetative Dynamics. Show all posts
Showing posts with label Vegetative Dynamics. Show all posts

Thursday, July 12, 2018

A biologist believes that trees speak a language we can learn


Photo by Jeffrey L. Bruce

Written by
Ephrat Livni


 I’m in a redwood forest in Santa Cruz, California, taking dictation for the trees outside my cabin. They speak constantly, even if quietly, communicating above- and underground using sound, scents, signals, and vibes. They’re naturally networking, connected with everything that exists, including you.

Biologists, ecologists, foresters, and naturalists increasingly argue that trees speak, and that humans can learn to hear this language.
Many people struggle with this concept because they can’t perceive that trees are interconnected, argues biologist George David Haskell in his 2017 book The Songs of Trees. Connection in a network, Haskell says, necessitates communication and breeds languages; understanding that nature is a network is the first step in hearing trees talk.

For the average global citizen, living far from the forest, that probably seems abstract to the point of absurdity. Haskell points readers to the Amazon rainforest in Ecuador for practical guidance. To the Waorani people living there, nature’s networked character and the idea of communication among all living things seems obvious. In fact, the relationships between trees and other lifeforms are reflected in Waorani language.
In Waorani, things are described not only by their general type, but also by the other beings surrounding them. So, for example, any one ceibo tree isn’t a “ceibo tree” but is “the ivy-wrapped ceibo,” and another is “the mossy ceibo with black mushrooms.” In fact, anthropologists trying to classify and translate Waorani words into English struggle because, Haskell writes, “when pressed by interviewers, Waorani ‘could not bring themselves’ to give individual names for what Westerners call ‘tree species’ without describing ecological context such as the composition of the surrounding vegetation.”

Because they relate to the trees as live beings with intimate ties to surrounding people and other creatures, the Waorani aren’t alarmed by the notion that a tree might scream when cut, or surprised that harming a tree should cause trouble for humans. The lesson city-dwellers should take from the Waorani, Haskell says, is that “dogmas of separation fragment the community of life; they wall humans in a lonely room. We must ask the question: ‘can we find an ethic of full earthly belonging?’”

Haskell points out that throughout literary and musical history there are references to the songs of trees, and the way they speak: whispering pines, falling branches, crackling leaves, the steady hum buzzing through the forest. Human artists have always known on a fundamental level that trees talk, even if they don’t quite say they have a “language.”

Photo by Jeffrey L. Bruce


Redefining communication
Tree language is a totally obvious concept to ecologist Suzanne Simard, who has spent 30 years studying forests. In June 2016, she gave a Ted Talk (which now has nearly 2.5 million views), called “How Trees Talk to Each Other.”

Simard grew up in the forests of British Columbia in Canada, studied forestry, and worked in the logging industry. She felt conflicted about cutting down trees, and decided to return to school to study the science of tree communication. Now, Simard teaches ecology at the University of British Columbia-Vancouver and researches “below-ground fungal networks that connect trees and facilitate underground inter-tree communication and interaction,” she says. As she explained to her Ted Talk audience:
I want to change the way you think about forests. You see, underground there is this other world, a world of infinite biological pathways that connect trees and allow them to communicate and allow the forest to behave as though it’s a single organism. It might remind you of a sort of intelligence.

Trees exchange chemicals with fungus, and send seeds—essentially information packets—with wind, birds, bats, and other visitors for delivery around the world. Simard specializes in the underground relationships of trees. Her research shows that below the earth are vast networks of roots working with fungi to move water, carbon, and nutrients among trees of all species. These complex, symbiotic networks mimic human neural and social networks. They even have mother trees at various centers, managing information flow, and the interconnectedness helps a slew of live things fight disease and survive together.

Simard argues that this exchange is communication, albeit in a language alien to us. And there’s a lesson to be learned from how forests relate, she says. There’s a lot of cooperation, rather than just competition among and between species as was previously believed.
Peter Wohlleben came to a similar realization while working his job managing an ancient birch forest in Germany. He told the Guardian he started noticing trees had complex social lives after stumbling upon an old stump still living after about 500 years, with no leaves. “Every living being needs nutrition,” Wohlleben said. “The only explanation was that it was supported by the neighbor trees via the roots with a sugar solution. As a forester, I learned that trees are competitors that struggle against each other, for light, for space, and there I saw that it’s just [the opposite]. Trees are very interested in keeping every member of this community alive.” He believes that they, like humans, have family lives in addition to relationships with other species. The discovery led him to write a book, The Hidden Life of Trees.

By being aware of all living things’ inter-reliance, Simard argues, humans can be wiser about maintaining mother trees who pass on wisdom from one tree generation to the next. She believes it could lead to a more sustainable commercial-wood industry: in a forest, a mother tree is connected to hundreds of other trees, sending excess carbon through delicate networks to seeds below ground, ensuring much greater seedling survival rates.

Foreign language studies
Seedling survival is important to human beings because we need trees. “The contributions of forests to the well-being of humankind are extraordinarily vast and far-reaching,” according to the United Nations Food and Agriculture Organization 2016 report on world forests (pdf).

Forests are key to combating rural poverty, ensuring food security, providing livelihoods, supplying clean air and water, maintaining biodiversity, and mitigating climate change, the FAO says. The agency reports that progress is being made toward better worldwide forest conservation but more must be done, given the importance of forests to human survival.
Most scientists—and trees—would no doubt agree that conservation is key. Haskell believes that ecologically friendly policies would naturally become a priority for people if we’d recognize that trees are masters of connection and communication, managing complex networks that include us. He calls trees “biology’s philosophers,” dialoguing over the ages, and offering up a quiet wisdom. We should listen, the biologist says, because they know what they’re talking about. Haskell writes, “Because they are not mobile, to thrive they must know their particular locus on the Earth far better than any wandering animal.”

https://qz.com/1116991/a-biologist-believes-that-trees-speak-a-language-we-can-learn/

Saturday, October 12, 2013

Condition of Vegetative Roofs Years After They're Exposed to the Real World.



In KieranTimberlake's extensive survey of roof gardens, it identified species that were planned, had thrived, or were rogue (l to r, respectively): prairie dropseed (Sporobulis heterolepsis); two-row stonecrop (Sedum spurium fuldaglut); moss pink, pink phlox (Phlox subulata) Credit: Bruce Peterson
It’s one thing to Photoshop a green roof into a rendering; it’s another thing to plant and sustain one. And it’s all but unheard of to go back and analyze the state of these living roofs years after their completion, as Philadelphia-based Kieran Timberlake did for its groundbreaking Green Roof Vegetation Study. The study responds to “a lack of long-term data on real buildings with diverse and dynamic plant communities,” according to the firm. Instead of concentrating on one engineering or horticultural aspect of green roofs, the firm looked at “how green roofs function as ecosystems and how they change over time.”

The jury highlighted two innovative aspects of the study: its comparative method and its ecological thesis. In 2011 and 2012, Kieran Timberlake surveyed six of its completed green roofs, ranging in area from 1,744 to 10,000 square feet, and designed between 2003 and 2011. Using the RelevĂ© vegetation survey method and the Braun-Blanquet abundance scale to quantify its findings, Kieran Timberlake assessed the roofs’ vegetative cover, species richness, and species diversity in 2-meter-square sections. The researchers also interviewed facilities and grounds maintenance personnel at each site. Juror Bill Zahner praised the study’s “way of collecting the data needed rather than saying, ‘Well, let’s just put seeds down and keep our fingers crossed.’ ” Juror Jing Liu agreed: “What they’re doing is different. The research is to study the long-term dynamics of green roofs.”

The resulting report confirms that roof ecologies are indeed dynamic and that changes will occur spatially and over time from the original planting design. More importantly, it details the nature of those changes, and raises questions about what the changes might indicate for long-term resiliency. In many of the case studies, the prevalent species observed on the roofs in 2012 that were part of the initial planting design were accompanied by dozens of new or “emergent” species. Artemisia (commonly known as mugwort) at the Yale Sculpture Building and Melilotus (or sweet clover) at Cornell University’s Alice H. Cook House independently found their way to roof tops, took root, and eventually made themselves at home in the roofscape design. Roof biodiversity often increased, although the report cautions that the results of any single survey could be deceptive: “What appears to be major shifts in species composition may in fact be short-term fluctuations or cycles caused by unpredictable changes in experienced climate and environmental conditions.”

While the report rigorously maps the distance between design intent and material outcomes, it also sets the stage for even more radical research to be conducted on the interplay between landscape and architecture. Kieran Timberlake envisions deploying sensors on the roof to measure thermal and moisture conditions in relation to the building’s internal climate and energy consumption. The report also suggests that architecture “is responsible for the … vegetative dynamics and ultimate performance of the roof.” On the roof of a dining hall at Middlebury College, for example, the otherwise feeble grasses and forbs become lush and verdant around the skylight cones, whose shade presumably helps the soil retain moisture. “Architectural design creates microclimates across a roof, determining availability of sunlight, water, and nutrients,” the report states.

Kieran Timberlake is already putting its newfound knowledge to use on the forthcoming Penn State Center for Building Energy Education and Innovation at the Philadelphia Navy Yard, which itself will serve as an ongoing laboratory and teaching center for scientists, students, and professionals interested in eco-effective architecture. The firm has developed a proposal to create a green roof test bed on this building; currently, it is in the process of raising funds.

But documenting the consequences of a designed green roof subjected to unforeseeable or uncontrollable environmental forces has wider implications for architecture in general, juror Jing Liu said. “If you think of the green roof as an ecological system, you can have architecture as an ecological system,” she said.

In the messiness of the real world, architecture depends on dynamic variables. Buildings are never really complete. Rather, they are subject to the vicissitudes of client maintenance regimes, the inconsistencies of occupant behavior, and the unpredictability of weather. That is why post-occupancy studies—of both indoor and outdoor environments—must be as meticulous as they are fearless.

Project Credits 
Project
 Green Roof Vegetation Study 
Design Firm KieranTimberlake, Philadelphia 
Project Team Roderick Bates, Stephanie Carlisle, Billie Faircloth, AIA, Stephen Kieran, FAIA, Taylor Medlin, Assoc. AIA, Max Piana, James Timberlake, FAIA, Ryan Welch


 
 In 2005, when Kieran Timberlake planned the green roof of Cornell University’s Carl L. Becker House, in Ithaca, N.Y., the rigorous planting plan comprised three types of succulents (two-row stonecrop, tasteless stonecrop, and houseleeks), combined with strips of prairie dropseed. When Kieran Timberlake surveyed the roof in 2012, the vegetation was healthy and full, but there were a few surprises—54 of them, in fact. That is the number of new plant species that had taken root over the years.
An aerial view of Cornell campus dormitories shows Kieran Timberlake's green roofs outlined in white; the Carl L. Becker House is at the right side of this image. Credit: Kieran Timberlake

According to KieranTimberlake's study, the most biodiversity was found in the Becker House's southernmost bay, where shading along the adjacent building edge minimized the effects of record droughts.

 
Various poplar species were found on the Becker House roof, despite not appearing in the original roof planting plan.
Credit: Kieran Timberlake